Human cells deficient in p53 regulated p21(waf1/cip1) expression exhibit normal nucleotide excision repair of UV-induced DNA damage.

نویسندگان

  • Manzoor A Wani
  • Gulzar Wani
  • Jihonag Yao
  • Qianzheng Zhu
  • Altaf A Wani
چکیده

Cancer development requires the accumulation of numerous genetic changes, which are believed to initiate through the presence of unrepaired lesions in the genome. In the absence of proficient repair, genotoxic agents can lead to crucial mutations of vital cellular genes via replication of damaged DNA. Many cell cycle regulatory proteins are known to modulate the repair capacity and consequently the fate of cells. We and others have recently shown that p53 tumor suppressor gene product is required for efficient global genomic repair (GGR) but not the transcription coupled repair (TCR) of the nucleotide excision repair (NER) sub-pathways. In order to discern the nature of the p53 modulation to be direct or indirect through a downstream mediator, we have investigated the processing of UV radiation induced lesions in human colon carcinoma, HCT116 cells expressing wild-type p53 but having different p21(waf1cip1) (hereafter p21) genotypes (p21+/+, p21+/-, p21-/-). Following 20 J/m(2) UV, all the three cell lines showed rapid increase in p53 protein but the accompanying increase in the expression of its downstream target protein p21 could only be seen in p21+/+ and p21+/- cells and not in p21-/- cells. Nevertheless, an absence of detectable p21 protein in deficient cells had no demonstrable effect on DNA repair response to UV irradiation, as measured by an immunoassay to detect removal of UV photoproducts from genomic DNA (GGR) and by individual strand specific removal of endonuclease-sensitive CPD from a target gene fragment (TCR). Introduction of cytomegalovirus (CMV)-driven luciferase reporter plasmid, UV damaged in vitro, into the un-irradiated cells of varying p21 background, revealed a relatively small but statistically significant decrease in the reporter expression in the host p21-/- as compared with p21+/+ and p21+/- HCT116 cells. Super-expression of p21 protein upon reintroduction of p21 expression construct, showed an enhanced recovery of UV damaged reporter activity that was not greatly different from a similar enhancement observed with undamaged plasmid reporter DNA. Taken together, the results indicate that (i) the p21 protein does not have a significant role in the repair of genomic DNA at chromosomal level; (ii) the well-established p53 dependent modulation of NER is distinct and independent of its cell cycle checkpoint function; and (iii) the reproducible enhancing effect of p21 expression observed through host cell reactivation (HCR) of extrachromosomal DNA is mainly attributable to an effect exerted on transcription rather than repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The p53-regulated cyclin-dependent kinase inhibitor, p21 (cip1, waf1, sdi1), is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts.

The p53 tumor suppressor gene is a transcriptional activator involved in cell cycle regulation, apoptosis, and DNA repair. We have shown that p53 is required for efficient nucleotide excision repair of UV-induced DNA photoproducts from global genomic DNA but has no effect on transcription-coupled repair. In order to evaluate whether p53 influences repair indirectly through cell cycle arrest fol...

متن کامل

Ablation of p21waf1cip1 expression enhances the capacity of p53-deficient human tumor cells to repair UVB-induced DNA damage.

During periods of genotoxic stress, the cyclin-dependent kinase inhibitor p21waf1cip1 (hereafter referred to as p21) is transcriptionally up-regulated by the p53 tumor suppressor and subsequently plays a key role in cellular growth arrest. Investigations have also indicated that p21 may regulate nucleotide excision repair, a critical pathway that removes carcinogenic DNA damage induced by UV li...

متن کامل

Repair Defect in p21 WAF1/CIP1 -/- human cancer cells.

p53 induction and cell cycle arrest occur following DNA damage, possibly to allow repair prior to replication. p21WAF1/CIP1, a cyclin-cyclin-dependent kinase inhibitor and proliferating cell nuclear antigen-interacting protein, is induced by p53 and mediates the cell cycle arrest. To investigate a role for p21 in DNA repair in vivo, we studied the expression of in vitro damaged reporter DNA tra...

متن کامل

Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts.

We have shown previously that Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in the removal of UV-induced cyclobutane pyrimidine dimers from genomic DNA, but still proficient in the transcription-coupled repair pathway (Ford, J. M., and Hanawalt, P. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8876-8880). We have now utilized monoclonal antibodies specific for cycl...

متن کامل

Effects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines

Background:  The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carcinogenesis

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2002